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A wave model is proposed for estimating damping loss factor as a function of
frequency for a beam with arbitrary transient loading applied through the
boundary conditions. In contrast to modal methods which provide measures of
damping only at the modal frequencies of the test structure, the damping factor is
determined over discrete, but regularly spaced, frequency values associated with
the temporal sampling frequency. This makes it possible to predict or simulate
damping in complex structures built from the tested component. Numerical and
experimental data from a free}free beam are used to validate the approach.
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1. INTRODUCTION

A new method is presented for estimating the frequency-dependent loss factor of
a damped vibrating beam from its transient response measured at several locations.
The method, which is applied here to numerical and experimental beam data, uses
the Fourier transform of the measured transient responses. Knowledge of the
beam's equation of motion is used to express the transformed responses at any
frequency as a sum of four damped waves. The loss factor is a simple function of the
spatial decays of these waves and may be estimated at any frequency for which the
Fourier transform can be accurately obtained. For short-time excitations, this
method allows one to estimate the loss factor at many frequencies, thus overcoming
the inherent limitations of modal descriptions that only estimate the loss factor at
the natural frequencies of the structure.

In recent years, a number of authors have developed representations of structural
response in terms of damped waves described by complex wavenumbers. For
example, Plona et al. [1] presented theoretical and experimental studies of the
complex wavenumbers of axisymmetric waves propagating in cylindrical shells in
contact with various acoustic media. Their experimental results were generated by
0022-460X/00/120433#17 $35.00/0 ( 2000 Academic Press
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exciting the shell with one cycle sinewave bursts centered at the frequency of
interest. Vollman et al. [2] studied the complex wavenumbers of up to 40 waves
propagating in a cylindrical shell in contact with a viscoelastic medium. Their
work, which also presented theoretical and experimental results, used a complex
spectrum estimation technique. McDaniel et al. [3] demonstrated that the complex
wavenumbers, amplitudes, and loss factor of mechanically excited damped beam
could be determined from a small array of accelerometers at any frequency of
excitation. Their approach used an iterative scheme that minimized the error
between the wave description and the measured responses by adjusting the complex
wavenumbers and amplitudes.

The problem addressed here is signi"cantly di!erent than those mentioned above
in that the excitation occurs over a very short time period. Consequently, the
structure is in free vibration for most of this period. Because free response is
composed only of the natural modes of the system, it was not clear a priori that
wave phenomenon at non-resonant frequencies would be observed. Furthermore,
a mathematical formulation did not exist for expecting that the Fourier transform
of the the beam's response would be composed of only a sum of waves at any
frequency. This formulation is presented here and indicates that if the structure has
zero initial conditions and the Fourier transform is taken over a su$ciently large
time window, such that the response has decayed, then the responses at any
transform frequency may be represented as a sum of waves. Furthermore, the
numerical and experimental results support the hypothesis that damping can be
estimated over a broad frequency range using an excitation of short duration.

This work was motivated by the need to assess damping in shock-loaded truss
structures composed of many box beams "lled with small viscoelastic beads.
Phillips [4] recently presented experimental results of such a truss and found that
the beads substantially increased the damping of the truss. One way of investigating
the vibrational characteristics of many truss designs, as well as their interactions
with attached structures, without fabricating them is to construct and interrogate
"nite element models. However, the loss factor associated with each beam is
di$cult to estimate, as it depends on the details, such as bead sizes and their
dynamic interactions. This di$culty is overcome by performing experiments on one
section of a beam and using the experimental data to estimate the loss factor in the
band of interest. Because the loss factor of a "lled beam is known to be a strong
function of frequency, as experimentally demonstrated by House [5], we desire loss
factor estimates at many frequencies in the band. These estimates are made possible
by the method described here.

Section 2 presents the theoretical foundation for the method. Expressions for
wave and modal estimates of the loss factor are derived. The transient response is
expressed as a sum of a wave solution and a modal solution. Because the initial
conditions are zero for a shock event, the modal solution is identically zero and the
Fourier transform of the transient response may, at each frequency, be written as
a sum of four damped waves. Once the forcing has ended, however, a transient
modal solution can be obtained. In section 3, the wave model is applied to a "nite
element beam model as well as actual beam data. Using the "nite element model,
the frequency bounds of the loss factor estimation procedure are investigated. The
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results are then applied to the analysis of bead-"lled box beam and a comparison is
made to modal damping estimates. The paper concludes with guidelines for use of
the method.

2. DAMPING THEORY

In developing the solution for the forced response, the premise of this paper is
that the total solution, y (x, t), can be written as a sum of wave and modal solutions:

y (x, t)"y
w
(x, t)#y

m
(x, t). (1)

Here, y
w

represents the wave solution which is required to satisfy homogeneous
initial conditions and non-homogeneous boundary conditions. The modal
solution, y

m
, is required to satisfy non-homogeneous initial conditions and

homogeneous boundary conditions. In other words, the modal solution accounts
for non-zero initial conditions, y (x, t"0) and the wave solution accounts for
forcing terms appearing in the boundary conditions.

The di!erential equation which both the modal and wave solutions must satisfy
is given by

o d2y/dt2#LMyN"0, (2)

where L is a time-invariant linear operator involving derivatives with respect to x.
It is subject to boundary conditions of the form
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in which x
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"M0, ¸N and L

b
is time-invariant and involves spatial derivatives of y.

The boundary forcing is such that f (t(0)"0 and lim
t?=

f (t)"0.
The modal response to non-zero initial conditions is the approach commonly

employed in modelling transient response data. Only the wave solution due to
transient forcing will be developed here. In particular, the equations will be
presented in the context of a free}free beam excited by a shear force at one end.

2.1. WAVE SOLUTION

The form of equation (2) describing a free}free beam is
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Homogeneous initial conditions are assumed:
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The boundary conditions of equation (3) are given by
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Equations (4) and (7) will be transformed with respect to time using the Fourier
transform pair

G(u)"
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2n P
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g(t)e*utdt, g(t)"P
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G(u)e~*utdu. (8)

Employing the homogeneous initial conditions (5) and assuming that
lim

t?=
y
w
(t)"0, the transformed beam equation (4) is given by
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where damping has been introduced in the frequency domain through a complex
modulus of elasticity, E(1!ig(u)).

The solution of this homogeneous equation is of the form
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where
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(11)

is complex due to damping. The "rst two terms correspond to #exural waves
propagating from each end of the beam. The latter two terms correspond to
evanescent waves decaying from each end of the beam. Damping causes the #exural
waves to decay, and the evanescent waves to oscillate, along the length of the beam.

The complex constants c
1
(u) through c

4
(u) are obtained by forcing equation (10)

to satisfy the transformed non-homogeneous boundary conditions (7). The
following set of simultaneous algebraic equations results when the complex
modulus is inserted in the transformed boundary conditions:
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When the right-hand side and k are known, this equation can be solved at each
frequency for the wave magnitudes c

1
(u) through c

4
(u). To obtain a non-trivial

solution to equation (12), a non-zero right-hand side is the only requirement. Thus,
the wave formulation presented can be applied to systems with arbitrary, albeit
non-zero, boundary conditions.

The inverse transform yields the time domain solution as
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2.1.1. Experimental estimation of damping

Given zero initial conditions and forcing only at the boundaries, damping can be
estimated using equation (10) when the spatial response is known at n discrete
locations, x

i
, i"1,2, n along the beam. In this case, a system of n non-linear

complex algebraic equations can be written at each frequency u:
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Given a guess of k(u)"k
R
(u)#ik
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(u), the wave magnitudes c
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,2, c

4
can be

estimated using linear least squares. Thus, any non-linear optimization algorithm
can be employed to "nd the k(u) which minimizes an error function computed with
this least-squares solution. The error function used in the examples of the next
section is the normalized mean square error, e, de"ned by
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where >
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, u) are the estimated and actual wave"elds respectively.

Given the error minimizing k
e
(u), the estimated loss factor is given by
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2.2. MODAL SOLUTION

A modal solution exists which satis"es equation (4), but with non-homogeneous
initial conditions
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and homogeneous boundary conditions given by
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The modal solution takes the form
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Recall that in the wave model, the entire complex modulus, E(1!ig), appears in
the spatial equation (9). Here, it is factored such that the real modulus E appears in
the spatial equation (21) and the complex damping factor in the temporal
equation (22).

The temporal solution for the jth mode takes the form
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where the positive value of u
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Numerical techniques can be employed to "t the modal solution of equations
(20) and (24) to transient response data. The damping factor, g, can be obtained
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from the complex frequencies of equation (24), u
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3. EXAMPLES

The proposed approach to modelling loss factor was tested on simulated as well
as experimental data. In the simulation, a transient shear load was applied to one
end of a "nite element beam model. The goal of the simulation was to compare
damping estimates obtained using modal and wave techniques for a system with
a prescribed level of damping. The damping consisted of sti!ness-dependent
Rayleigh damping. The remaining model properties and loading were selected to
match a beam experiment which is also described here. In the experiment, a box
beam was "lled with granular material to enhance damping. The beam was struck
transversely at one end with an instrumented sledge hammer. In this case, the
actual damping is unknown. Prior experiments in which sinusoidal excitation was
applied suggest that damping is strongly dependent on frequency. Simulation and
experimental results are both described below.

3.1. FINITE ELEMENT BEAM MODEL

The model was composed of 12 Euler}Bernoulli cubic beam elements with the
properties listed in Table 1. The moment of inertia was computed based on the
cross-section of the empty box beam. The mass per unit length corresponded to
that of the box beam when "lled with granular material. The prescribed Rayleigh
damping was of the form

[C]"a[M]#b[K] (28)

with a"0 and so

g(u)"ub. (29)
TABLE 1

Properties of ,nite element beam model

Property Value

E, elastic modulus 30]106 psi
I, moment of inertia 68)7 in4

¸, length 16 ft
m, mass per unit length 0)129 slugs/ft

a 0
b 2]10~4
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An actual hammer blow, sampled at 5 kHz, was applied as a shear force at x"0.
Measurements of transverse acceleration a(x, t) were assumed available at 13
points positioned 16 in apart along the beam.

To verify the presence of waves in the data, a frequency-wavenumber transform
can be employed by computing a two-dimensional Fourier transform of the
acceleration data, a (x, t),
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(2n)2 P
T

0
P

L

0

a (x, t)e*(kx`ut)dxdt. (30)

The transform A(u, k) is maximized whenever the wavenumber and frequency
(k, u) coincide with that of a natural wave, (k

n
, u

n
), as described by

a(x, t)"RMAe*(knx~unt)N. (31)

Note that equation (31) represents a forward going wave and so A(u, k) will be
maximized for k"!k

n
(0.

Figure 1 depicts the frequency-wavenumber transform for a typical high-
amplitude hammer hit. Rearranging equation (11), we obtain

u+S
EI
m

k2, ub@1. (32)
Figure 1. Frequency-wavenumber transform of "nite element model acceleration response.
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The two branches of this parabola are clearly visible in Figure 1 for 0)u)

300 Hz. The coarse spacing of the 13 accelerometers produces side lobes to the left
and right of this parabola. They are particularly strong at the modal frequencies of
the beam, i.e., f"42, 118, 228 Hz. Note that the left branch of the parabola (k(0)
corresponds to the wave leaving the impacted end of the beam. The right branch
(k'0) corresponds to the wave re#ected from the far end. Owing to damping, it
can be seen that the magnitude of the re#ected wave is reduced.

3.1.1. ¸oss factor estimation

The loss factor was estimated using equations (14)}(16) and the 13 numerically
computed accelerations. To gain insight into the sensitivity of the estimation
procedure, normally distributed noise with a variance of 0)98 m/s2 (white with
respect to time) was added to the acceleration data. The exact and estimated
damping factors are depicted in Figure 2. Note that no attempt was made to
estimate spatial damping at frequencies for which the beam length is less than half
a wavelength. This is due to the weak dependence of the implemented error
function on damping when evaluated over fractions of a wavelength. Thus, the
abscissa starts at the "rst modal frequency.

Following equation (29), the exact sti!ness-proportional Rayleigh damping is
linear in frequency. The noise-free solution closely follows the exact solution, except
for several #uctuations above 300 Hz. Similarly, agreement between the exact and
noisy-data estimate is good below 300 Hz. Above 300 Hz, the estimated loss factor
#uctuates widely with frequency, but with an average value approximating the
Figure 2. Loss factor versus frequency for the "nite element model: ) } ) } ), exact solution; } } },
estimate from noise-free simulated data; **, estimate from noisy simulated data.
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exact solution. Returning to Figure 1, this result is not surprising, as it is clear that
the wave energy falls o! between 250 and 300 Hz.

With experimental data, the exact loss factor and signal noise are unknown.
Consequently, it is worthwhile to investigate measures by which an upper
frequency bound can be ascertained. A natural choice is to use the error function, e,
employed in the estimation procedure. Normalized mean square error, given by
equation (15), is plotted in Figure 3. This "gure con"rms the observations regarding
loss factor. For the noisy case, the error rapidly increases above 250 Hz. While of
much smaller magnitude, the noise-free error also increases rapidly above 250 Hz.

From Figure 1, it is clear that loss factor estimation using a wave model is only
appropriate for frequencies at which a wave of su$cient magnitude is present in the
data. Thus, the upper frequency bound for noise-free estimation is determined by
the energy distribution of the impact as well as by the loss factor itself. As described
in the paragraph below, the major e!ect of additive acceleration noise is to reduce
this upper frequency bound.

Figures 1}3 clearly show that the addition of noise has a modest e!ect on loss
factor estimation for high amplitude waves (and consequently high acceleration
measurements). As frequency increases, however, wave amplitude falls o! and
(assuming frequency-independent noise amplitude) the noise begins to obscure the
magnitude and phase relationship between the acceleration measurements along
the beam. This can be seen in Figure 4 which depicts the magnitudes of the 13
acceleration measurements used in the example. Recall from equation (14) that the
estimation procedure involves "tting a sum of four waves to these measurements at
Figure 3. Normalized mean square error versus frequency for the simulated data: } } }, without
noise; **, with noise.



Figure 4. Magnitude of transformed acceleration versus frequency for the 13 accelerometers: } } },
without noise; **, with noise. Note that noise dominates relative magnitudes above 250 Hz.
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each frequency. From 200 to 250 Hz, the magnitude relationship of the signals is
una!ected by the noise. Above 250 Hz, however, the noise dominates the relative
acceleration magnitude for many acceleration pairs.

3.2. FILLED BOX BEAM

A steel box beam with cross-section 10A]6A]3/8A and length 16@ was suspended
horizontally by elastic cords to approximate free-free boundary conditions. The
beam con"guration is depicted in Figure 5 and the cross section is shown in
Figure 6. The elastic cords were 3/4A in diameter and 20 ft in length. Steel plate
endcap assemblies, with dimensions of approximately 12A]8A]3/4A, were bolted
to both ends of the beam for convenient installation of the "ll materials. The two
end plates have equal weight. With a total beam weight of approximately 603 lb,
the frequencies due to the suspension are estimated at less than 5 Hz.

Chevron LDPE 1117B beads were used as the granular "ll material. This
material is widely used in injection molding. The weight density of the packed
LDPE beads was 36)8 lb/ft3. The volume available to the "ll material was 5)40 ft3.
During the "lling process, vibrations were applied to the beam (by tapping with
a hammer) to ensure the granular material was well packed in the beam.

As shown in Figure 5, 13 accelerometers were placed 16 in apart on the beam
along the horizontal plane passing through the center of the cross section. The
number and spacing of accelerometers was chosen so as to provide approximately



Figure 5. Beam schematic.
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6 points per wave for the 4th bending mode. The uniaxial accelerometers used in
the test were calibrated to 50 g's.

3.2.1. Experimental procedure

Flexural vibrations were excited in the horizontal plane as depicted in Figures 5
and 6. The impact forces were generated by a transverse hammer blow to one end
plate on the side opposite the accelerometers. The accelerations and impact force
were recorded at a sampling rate of 5 kHz using a 1 kHz low-pass "lter.

Ten trials of varying impact amplitude were conducted for the "lled beam. The
four with the highest impact amplitudes were deemed to possess a su$cient signal
to noise ratio up to 300 Hz to employ a wave model for loss factor estimation. For
a typical trial, Figure 7 depicts the time histories of the accelerometers at the beam's
impact end (x"0) and far end (x"l ). The wave speed can be deduced from the
time it takes for the "rst peak to reach the far end of the beam. A comparison of the
amplitudes of the accelerometers' "rst peaks demonstrates the existence of spatial
damping. For t'0)3 s, the modal character of the data is apparent with the
response dominated by frequencies of 37 and 108 Hz.

The Fourier transform of these acceleration histories is plotted in Figure 8. Five
beam modes can be seen. The "rst two correspond to those observed in the time
histories. A pendulum mode, due to the suspension, can also be observed at
approximately 5 Hz. To verify the presence of waves in the experimental data, the
frequency-wavenumber transform of equation (30) was employed. The result for
one trial is shown in Figure 9. This "gure compares favorably with the "nite
element model results of Figure 1.

It should be noted that box beams*empty and "lled*are capable of producing
plate waves which travel along the sides of the beam. Both analytical predictions
and frequency wavenumber transforms of the data indicate that these waves cut on
at approximately 500 Hz. Consequently, they will not be considered here.

3.2.2. ¸oss factor estimation

Equations (14)}(16) were used to obtain a wave model estimate of the loss factor.
As this model requires non-zero boundary conditions and zero initial conditions,
the "rst 15 000 data points (3 s duration) were used for loss factor estimation. For



Figure 6. Beam cross-section: , 3/8 in steel; , granular material.

Figure 7. Acceleration (in g's) versus time at both ends of beam: **, x"0; } } }, x"¸. Shock
input was at x"0.
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a clear depiction of the variation in loss factor estimates between the four trials
considered, the maximum and minimum envelope curves are plotted in Figure 10.
Similarly, the maximum and minimum normalized error is plotted in Figure 11.
Note that the knee of the error curve occurs at about 225 Hz. Based on the FEM
results (recall Figure 3), the wave damping estimates are valid up to this frequency.

As a result, these estimates can be compared to modal estimates obtained using
equations (20), (24) and (27) at the "rst three modal frequencies of 37, 108 and
207 Hz. Since the modal equations apply for homogeneous boundary conditions
and non-zero initial conditions, a time window was employed which started after
the hammer impact ended. This time corresponds to the "rst zero crossing of the
accelerometer located at x"0. Figure 7 shows this occurs at t+4 ms. Data from
the 13 accelerometers was used simultaneously in the modal damping estimate. The
average modal damping factors are shown in Figure 10. The variation between
trials, while not shown, was less than 0)02 for the three modes.

In Figure 10, the wave and modal loss factors are seen to be consistent at the
three modal frequencies. The average wave model estimate exceeds the average



Figure 8. Acceleration versus frequency at both ends of beam: **, x"0; } } }, x"¸. Shock
input was at x"0. Five highest peaks correspond to beam modes. 5 Hz peak is suspension frequency.

Figure 9. Frequency wavenumber transform of beam acceleration data.
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Figure 10. Loss factor versus frequency for four trials:**, wave envelope maximum; } } }, wave
envelope minimum; s, modal average.

Figure 11. Normalized mean square error versus frequency for four trials: **, envelope
maximum; } } }, envelope minimum.
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modal estimate by 0)05 for the "rst two modes and 0)03 for the third mode. In
addition, greater variation between trials was observed with the wave method.

It is likely that the higher damping estimate obtained by the wave method can be
attributed to the di!erence in data records used with the two methods. Recall that
the wave data record must include the time duration of the hammer impact while
the modal data record must exclude these data. Thus the modal data window
excludes t)4 ms shown in Figure 7. While short in comparison to the total
temporal record length, note that the omitted acceleration peak at x"0 is "ve
times the value of the "rst included peak.

It is probable that damping is higher during this initial, high-amplitude time
period. This may be due to nonlinear behavior associated with beam bending.
Alternatively, starting from rest, the rate of energy absorption by the granular "ll
may initially exceed its rate of dissipation. From the perspective of the beam's
motion, damping would initially be high and decrease until the granular "ll reached
&&steady state'' motion in response to forcing by the beam. The inclusion of this
early-time data would increase the average damping observed over the time
window.

The greater trial-to-trial variation in wave-based loss factor estimation is due to
the use of a spatial discretization (13 locations) which is coarse in comparison to the
temporal discretization employed in the modal estimate. At the third modal
frequency (207 Hz), this corresponds to 4 spatial points per wavelength compared
to 20 temporal points per wavelength. A larger number of points per wavelength
reduces the e!ect of sensor noise on the estimate.

4. CONCLUSIONS

The wave method complements traditional modal techniques by making it
possible to estimate the loss factor at regularly spaced frequency values*not just at
modal frequencies. The method is applicable for arbitrary forcing applied through
the boundary conditions. Furthermore, no speci"c knowledge of the structure's
boundary conditions, material properties on cross-sectional dimensions is required.
Since the measurements are Fourier transformed, the data record must be of
su$cient duration for the transform to converge. Except when damping depends
strongly on amplitude or time, however, this condition is easily met.

The frequency range over which damping can be estimated is limited by several
factors. Given a "xed amount of energy at a frequency, the actual loss factor must
be large enough to separate wave decay along the length of the beam from signal
noise. Thus, there must be su$cient wave energy due to the boundary forcing to
produce an acceptable signal to noise ratio. Since realistic forcing is band limited,
this condition imposes an upper bound on estimation frequency. Normalized
estimation error was found to provide a practical means of determining this upper
bound. In addition, when the ratio of wavelength to beam length (j/¸) is large,
normalized error is a weak function of loss factor. This imposes a lower bound on
estimation frequency. Analysis of numerically and experimentally generated beam
data indicates that the "rst modal frequency (j/¸"2) is an adequate lower bound.
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